Microbial ecology of arsenic-mobilizing Cambodian sediments: lithological controls uncovered by stable-isotope probing.
نویسندگان
چکیده
Microbially mediated arsenic release from Holocene and Pleistocene Cambodian aquifer sediments was investigated using microcosm experiments and substrate amendments. In the Holocene sediment, the metabolically active bacteria, including arsenate-respiring bacteria, were determined by DNA stable-isotope probing. After incubation with (13) C-acetate and (13) C-lactate, active bacterial community in the Holocene sediment was dominated by different Geobacter spp.-related 16S rRNA sequences. Substrate addition also resulted in the enrichment of sequences related to the arsenate-respiring Sulfurospirillum spp. (13) C-acetate selected for ArrA related to Geobacter spp. whereas (13) C-lactate selected for ArrA which were not closely related to any cultivated organism. Incubation of the Pleistocene sediment with lactate favoured a 16S rRNA-phylotype related to the sulphate-reducing Desulfovibrio oxamicus DSM1925, whereas the ArrA sequences clustered with environmental sequences distinct from those identified in the Holocene sediment. Whereas limited As(III) release was observed in Pleistocene sediment after lactate addition, no arsenic mobilization occurred from Holocene sediments, probably because of the initial reduced state of As, as determined by X-ray Absorption Near Edge Structure. Our findings demonstrate that in the presence of reactive organic carbon, As(III) mobilization can occur in Pleistocene sediments, having implications for future strategies that aim to reduce arsenic contamination in drinking waters by using aquifers containing Pleistocene sediments.
منابع مشابه
Molecular analysis of arsenate-reducing bacteria within Cambodian sediments following amendment with acetate.
The health of millions is threatened by the use of groundwater contaminated with sediment-derived arsenic for drinking water and irrigation purposes in Southeast Asia. The microbial reduction of sorbed As(V) to the potentially more mobile As(III) has been implicated in release of arsenic into groundwater, but to date there have been few studies of the microorganisms that can mediate this transf...
متن کاملLinking specific heterotrophic bacterial populations to bioreduction of uranium and nitrate in contaminated subsurface sediments by using stable isotope probing.
Shifts in terminal electron-accepting processes during biostimulation of uranium-contaminated sediments were linked to the composition of stimulated microbial populations using DNA-based stable isotope probing. Nitrate reduction preceded U(VI) and Fe(III) reduction in [¹³C]ethanol-amended microcosms. The predominant, active denitrifying microbial groups were identified as members of the Betapro...
متن کاملResolving functional diversity in relation to microbial community structure in soil: exploiting genomics and stable isotope probing.
The microbial ecology of soil still presents a challenge to microbiologists attempting to establish the ways in which bacteria and fungi actively metabolise substrates, link into food webs and recycle plant and animal remains and provide essential nutrients for plants. Extraction and in situ analysis of rRNA has enabled identification of active taxa, and detection of mRNA has provided an insigh...
متن کاملMicrobial Community Structure and Arsenic Biogeochemistry in Two Arsenic-Impacted Aquifers in Bangladesh
Long-term exposure to trace levels of arsenic (As) in shallow groundwater used for drinking and irrigation puts millions of people at risk of chronic disease. Although microbial processes are implicated in mobilizing arsenic from aquifer sediments into groundwater, the precise mechanism remains ambiguous. The goal of this work was to target, for the first time, a comprehensive suite of state-of...
متن کاملProteomic Stable Isotope Probing Reveals Biosynthesis Dynamics of Slow Growing Methane Based Microbial Communities
Marine methane seep habitats represent an important control on the global flux of methane. Nucleotide-based meta-omics studies outline community-wide metabolic potential, but expression patterns of environmentally relevant proteins are poorly characterized. Proteomic stable isotope probing (proteomic SIP) provides additional information by characterizing phylogenetically specific, functionally ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental microbiology
دوره 17 6 شماره
صفحات -
تاریخ انتشار 2015